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Abstract

After a giant impact between the proto-Earth and a hypothetical celestial object,
a disk of gas and liquid fragments is orbiting the Earth. Collisions between these
moonlets and subsequent accretion are believed to have formed the Moon. In this
draft, I state the mathematical model used to simulate the formation of the Moon.
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In this draft, E denotes the Earth and O is its center of mass. In a general fashion,
the mass of the Earth and of the Sun are denoted M⊕ and M⊙, respectively. Let N be
the total number of moonlets orbiting E and for 1 ≤ j ≤ N , mj is the mass of the jth

moonlet.
The geocentric inertial reference frame is (O, i, j,k), while the reference frame attached

to the rotation of the Earth is (O, I,J ,K), with k = K. The transformation from one to
another is done through application of the rotation matrix Ω, which is the sideral rotation
of the Earth. All vectors and matrices are bolded while their norms are unbolded.

1 Interactions with the Earth

1.1 Center of mass
The gravitational interactions between the moonlets and the center of mass of the Earth
is the most obvious physical effect to take into account, as any other contribution is
negligible in regards1. Let r be the position of a moonlet of mass m in the geocentric
reference frame. Its gravitational potential per unit mass reads

V = −GM⊕

r
, (1)

where G is the gravitational constant. The moonlet’s acceleration is given by

r̈ = −∇rV, (2)

that is,
r̈ = −GM⊕

r3 r. (3)

1.2 Flattening
The Earth is not exactly a sphere, and under its own rotation, it tends to take an ellipsoidal
shape. Let ζ(θ, φ) be the altitude of the geoid of the Earth, where

X = r sin θ cosφ,
Y = r sin θ sinφ,
Z = r cos θ,

(4)

is the relation between the cartesian and spherical coordinates of (O, I,J ,K). If R⊕
denotes the mean radius of the Earth, then the geoid is generally defined as the only
equipotential surface such that∫ 2π

0

∫ π

0
ζ(θ, φ) sin θdθdφ = R⊕, (5)

1On short timescales, collisions and close encounters are not.
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that is, as the only equipotential surface whose average over the sphere is the mean radius.
Expanding the geoid over the spherical harmonics as

ζ(θ, φ) = R⊕ [1 + h(θ, φ)] ,

h(θ, φ) =
+∞∑
l=2

l∑
m=−l

ϵlmYlm(θ, φ),
(6)

satisfies Eq. (5). For reference, the spherical harmonics are defined in Appendix A of
my PhD manuscript. If the Earth is spherical, then its potential is radial and we take
ζ(θ, φ) = R⊕, that is, ϵlm = 0 for all l and m.

Similarly to the geoid, we write the potential raised by the redistribution of mass
within the Earth as (e.g., Boué et al., 2019)

V (r, θ, φ) = −GM⊕

r
[1 + v̂(r, θ, φ)] + VΩ(r, θ),

v̂(r, θ, φ) =
+∞∑
l=2

l∑
m=−l

(
R⊕

r

)l

V̂lmYlm(θ, φ),
(7)

where VΩ(r, θ) = Ω2r2 (P2(cos θ) − 1) /3 is the potential raised by the rotation itself. We
denote Ωc =

√
GM⊕/R3

⊕ the critical rotation rate that would compensate gravity at the
equator if the Earth was spherical. With this notation, the potential raised by the
deformed Earth can be rewritten

V (r, θ, φ) = −GM⊕

r
[1 + v(r, θ, φ)] − 1

3Ω2r2,

v(r, θ, φ) =
+∞∑
l=2

l∑
m=−l

(
R⊕

r

)l

VlmYlm(θ, φ),
(8)

where Vlm = V̂lm if (l,m) ̸= (2, 0) and

V20 = V̂20 − 1
3

Ω2

Ω2
c

r5

R5
⊕
. (9)

If we assume h ≪ 1 and v ≪ 1 (this is equivalent to Ω2 ≪ Ω2
c), then it is easy to verify,

from the definition of the geoid, that (see Wahr, 1996, Sect. 4.3.1)

ϵlm = Vlm

∣∣∣
r=R⊕

. (10)

This gives a relation between the figure of the Earth (the geoid) and the potential raised
by the redistribution of mass.

If we limit ourselves to the quadrupolar order and if we assume that the problem does
not to depend on φ (axisymmetry), then all the Vlm and ϵlm vanish for (l,m) ̸= (2, 0). For
the fluid Earth, it can be shown (Sect. 5.2.1 of my PhD manuscript) that (Wahr, 1996,
Eq. (4.24))

ϵ20 = −5
6

Ω2

Ω2
c
. (11)

https://jeremycouturier.com/img/PhD_manuscript.pdf
https://jeremycouturier.com/img/PhD_manuscript.pdf
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The J2 coefficient is defined as J2 = −V̂20 (with the convention of Appendix A of my PhD
manuscript for the spherical harmonics). For the fluid Earth, Eqs. (9), (10) and (11) yield

J2 = 1
2

Ω2

Ω2
c
. (12)

According to Eq. (7), a moonlet orbiting the Earth at position r in the geocentric reference
frame, feels, from the equatorial bulge, the potential per unit mass2

VJ2 = GM⊕R
2
⊕

r3 J2P2(cos θ). (13)

Using the expression of the second Legendre polynomial, we can rewrite that as

VJ2 = −
GM⊕R

2
⊕

2r5 J2
(
r2 − 3 (k · r)2

)
. (14)

Equation (2) gives the contribution of the equatorial bulge to the acceleration of the
moonlet. Writing r = xi + yj + zk, we have k · r = z, and then

r̈ = GM⊕R
2
⊕J2

r5

[
15z2 − 3r2

2r2 r − 3zk
]
. (15)

We extract the value of J2 from Eq. (12). Since the young Earth had a rotation rate much
larger than today’s value, the effect of the equatorial bulge should play an important role
in shuffling the orbits. In particular, a high value for J2 is responsible for a 1 : 1 secular
resonance between the precession of the pericentre of the moonlets and the mean motion
of the Sun, that happens at a few Earth radii only. See Sect. 3 for details.

1.3 Equatorial asymmetry

2 Interaction with the Sun
The interaction between a moonlet, located at r, and the Sun, located at r⊙ in the
geocentric reference frame can be taken into account in the model by adding to the
moonlet the potential per unit mass

V⊙ = −GM⊙

(
1

|r − r⊙|
− r · r⊙

r3
⊙

)
. (16)

To the quadrupolar order, this gives

V⊙ = −GM⊙

2r3
⊙

(
3(r · r⊙)2

r2
⊙

− r2
)
. (17)

Equation (2) yields, for the acceleration of the moonlet

r̈ = GM⊙

r3
⊙

(
r − 3r · r⊙

r2
⊙

r⊙

)
. (18)

2Due to the axisymmetry, we can go to the geocentric frame by simply removing VΩ in Eq. (7).

https://jeremycouturier.com/img/PhD_manuscript.pdf
https://jeremycouturier.com/img/PhD_manuscript.pdf
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For simplification, we assume that the Earth orbits the Sun on a circular trajectory.
Without restraining the generality, we can assume that the Earth’s longitude of the
ascending node is 0 (this can be achieved by simply putting the unit vector i of the
geocentric frame towards the ascending node). Similarly, for a circular orbit, we can
arbitrarily choose ω⊙ = 0. We denote a⊙ the semi-major axis of the Earth orbit and ϵ the
obliquity of the Earth. With these notations, the vector r⊙ reads

r⊙ =

x⊙
y⊙
z⊙

 =

1 0 0
0 cos ϵ − sin ϵ
0 sin ϵ cos ϵ


a⊙ cosλ⊙
a⊙ sin λ⊙

0

 =

 a⊙ cosλ⊙
a⊙ sin λ⊙ cos ϵ
a⊙ sin λ⊙ sin ϵ

 , (19)

where λ⊙ = n⊙t = t
√

GM⊙/a3
⊙.

3 Long-term effects on the moonlet’s orbits

4 Interaction with the gas disk
Depending on the violence of the impact, the proto-lunar disk could be initially entirely
made up of gas, or could contain a non-zero fraction of liquid moonlets. Then, as the disk
cools down, condensation can form new moonlets to replace those that were lost by tidal
disruption. The existing moonlets thus undergo drag from the remaining gas that affects
their orbits.

4.1 Structure and evolution of the gas disk
A first and simple idea consists in considering that the gas disk is stationary and axisym-
metric. This approximation is valid as long as the timescale of disk evolution is large
compared to the timescale of formation of the Moon. The structure is determined by
solving the Euler equation, and if the total mass of the gas disk is negligible with respect
to that of the Earth, then the gravitational potential takes a simple form and the Euler
equation can be solved explicitly in the z direction. Assuming an isothermal equation of
state p = ρc2

s , where cs(r) is the sound speed, we find (Armitage, 2010)

ρ(r, z) = C(r) exp
[

GM⊕

c2
s (r2 + z2)1/2

]
, (20)

where C(r) is an integration constant, ρ is the density and p is the pressure. Assuming
that the disk is thin with respect to its radial extension, expanding Eq. (20) over z/r
yields

ρ(r, z) = ρ0(r) exp
(

− z2

2h(r)2

)
, (21)

where h(r) = cs(r)/Ω(r) is the vertical scale-height of the disk and Ω(r) =
√

GM⊕/r3 is the
Keplerian angular frequency. The surface density of the disk is given by Σ =

∫
R ρ(r, z)dz.

Using Eq. (21) and the identity
∫
R e

−αz2
dz = (π/α)1/2, we find

Σ =
√

2πρ0h, (22)
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giving a simple relation between the surface density Σ and the mid-plane density ρ0.
Along the r direction, the Euler equation reduces to

v2
φ

r
= GM⊕

r2 + 1
ρ

dp

dr
, (23)

from which we can deduce that the gas does not orbit at the Keplerian speed as soon as
dp/dr ̸= 0. Choosing for the pressure a profile p = p0 (r/r0)−n, and for the sound speed a
profile cs = c(0)

s (r/r0)−β yields

vφ = vK

[
1 − n

c2
s
v2

K

(
r

r0

)−2β
]1/2

, (24)

where vK =
√

GM⊕/r is the Keplerian velocity. Armitage, 2010 seems to be discarding
the factor in r/r0 in his Eq. (2.20), as he simply writes

vφ = vK

[
1 − n

c2
s
v2

K

]1/2

. (25)

With these profiles, the surface density Σ and aspect ratio h/r behave like

h(r)
r

= h(r0)
r0

(
r

r0

)1/2−β

and Σ(r) = Σ0

(
r

r0

)β−n+3/2
, (26)

and the structure of the disk is entirely determined by choosing these two profiles.
However, these profiles do not depend on time. The differential equation that governs

the evolution of the surface density Σ(r, t) is given by Eq. (3.6) of Armitage, 2010. It
cannot be solved analytically in the general case and in order not to have to numerically
solve this differential equation, we add time-dependency in the model by considering the
fit given by Ida et al., 2020

Σ(r, t) = Σ0t
−21/22
⋆

(
r

R⊕

)−3/4

exp
[
−
(
r

r⋆

)5/4
t−15/22
⋆

]
, (27)

where Σ0 is the surface density at r = R⊕ and t = 0, r⋆ is a typical radius and

t⋆ = 1 + 75νt
16r2

⋆

, (28)

with ν ≪ c2
s Ω−1 homogeneous to a kinematic viscosity and r⋆ is chosen in Nakajima et al.,

2022 to be the Roche radius.

4.2 Gas drag
When a moonlet of mass m and radius R travels through the gas at velocity v = ṙ,
it undergoes an acceleration due to gas drag. For very high Reynolds number, this
acceleration is generally written

r̈ = − 1
2mρgCxπR

2 |v − vg| (v − vg) , (29)
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where ρg(r, z, t) is the density of the gas (computed from Eqs. (21), (22) and (27)), the
dimensionless drag coefficient is Cx = 0.45 for a sphere-shaped moonlet at high Reynolds
number and vg is the velocity of the gas. If we write the position of the moonlet as
r = xi + yj + zk, then the velocity of the gas at r is given by

vg = vφ (− sinφ i + cosφ j) = vφ

(
−y√
x2 + y2 i + x√

x2 + y2 j

)
, (30)

where we use Eq. (25) for vφ. If we write v = ẋi + ẏj + żk, then the relative velocity
reads

v − vg =
(
ẋ+ yvφ√

x2 + y2

)
i +

(
ẏ − xvφ√

x2 + y2

)
j + żk, (31)

and its norm is
|v − vg| =

√
v2 + v2

φ + 2vφ
ẋy − ẏx√
x2 + y2 . (32)

4.3 Ionisation of the gas and truncation radius

5 Moonlet spawning
The total moonlet mass decreases over time due to moonlets being shattered by tidal
forces when they pass too close to the Earth, or when they escape Earth gravity. In
order to compensate the loss in total moonlets mass, there has to be a mechanism able to
produce liquid mass outside the Roche radius.

5.1 Expansion of the inner fluid disk
One such mechanism is proposed by Salmon and Canup, 2012. The idea is to consider
that below the Roche radius, tidal forces prevent liquids from accreting and the region
r < RRoche is composed of a flat liquid disk. Due to viscous forces, the outer edge of this
liquid disk tends to expand outward. As a results, tidal forces at the outer edge of the
liquid disk become too weak to prevent aggregation and new liquid moonlets are formed.
According to Goldreich and Ward, 1973, the typical size of the newly formed moonlets is

mf = 16π4f̃ 2Σ3
f r

6
out

M2
⊕

, (33)

where rout is the radius of the outer edge of the liquid disk, Σf is its surface density
(assumed independent of r) and f̃ is a dimensionless parameter less than 1, but not much
smaller than 1. Salmon and Canup, 2012 choose f̃ = 0.3. The mass Mf of the fluid disk
varies due to liquid flowing out of the Roche radius and falling onto the Earth. The mass
flowing out due to the viscous expansion at the outer edge (resp. at the inner edge) of the
liquid disk reads

Ṁf,outer = −2πroutṙoutΣf
(
resp. Ṁf,inner = 2πrinṙinΣf

)
, (34)

where ṙin is the inner edge. The timescale between two moonlet spawning is given by
∆t̃ = mf/Ṁf,outer. We simulate the spawning of moonlets due to viscous spreading of the
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inner fluid disk by simply adding a new moonlet of mass mf every ∆t̃ on a circular and
equatorial orbit, with a semi-major axis slightly larger than the Roche radius (3R⊕) and
a mean anomaly chosen at random in [0, 2π[. Like Salmon and Canup, 2012, we take
a moonlet out of the simulation and add its mass back in the inner liquid disk if that
moonlet goes below 2R⊕.

The expansion rates of the inner and outer edges of the liquid disk are given by Salmon
and Canup, 2012 as

ṙin = g(κ)ṙout = νf

2rin (κ − 1) (1 − g(κ)) , (35)

where

g(κ) =
4κ

(
κ5/2 − 1

)
− 5 (κ2 − 1)κ3/2

4 (κ5/2 − 1) − 5 (κ2 − 1) and κ = rout

rin
. (36)

The viscosity of the fluid disk is given by

νf = π2G2Σ2
f

Ω3 . (37)

Through its dependency on Σf, the viscosity depends on time. However, Salmon and
Canup, 2012 explicitly assume that νf does not depend on r, and we consider for Ω its
value at the Roche radius, that is, Ω =

√
GM⊕/R3

roche. By assumption, rin = R⊕ and
rout = Rroche, which yields κ = 2.9. We obtain

Ṁf,outer = 0.994894νfΣf, Ṁf,inner = 0.600914νfΣf, and Ṁf = 1.595808νfΣf. (38)

The inner fluid disk surface density Σf cancels out from the expression of ∆t̃, which means
that ∆t̃ does not depend on time. Assuming Rroche = 2.9R⊕, a moonlet spawns from the
inner fluid disk every

∆t̃ = mf

Ṁf,outer
= 16π2f̃ 2

0.994894 Ω = 11.228001T, (39)

where T = 2π
√
R3

⊕/ (GM⊕) is the orbital period at Earth’s surface. The surface of the
inner fluid disk is Sf = π

(
R2

roche −R2
⊕

)
= 7.41πR2

⊕ and the mass of the spawned moonlets
can be rewritten

mf

M⊕
= 6.613719M

3
f

M3
⊕

⇒ Rf

R⊕
= 1.877076 Mf

M⊕

(
ρ⊕

ρ

)1/3

. (40)

While the time ∆t̃ between two moonlet spawning does not depend on time, the radius
Rf and mass mf of the spawned moonlets depend on time through their dependency on
the mass Mf of the inner fluid disk.

5.2 Condensation of the gas disk

6 Detecting close encounters
All the physical effects mentionned so far can be treated in a straightforward manner in a
time proportionnal to the total number of moonlets N , that is, if only these effects were
to be taken into account, each time step would have a time complexity O(N).
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However, it is clear that no simulation of satellite formation can reach any satisfying
degree of realism without taking into account close encounters between moonlets, and
in particular collisions and accretion. Furthermore, we can expect the total number of
moonlets in the early stages of the proto-satellite disk to be very large, and a realistic
simulation would preferably feature a large number of moonlets. The necessity of treating
close encounters in an efficient time manner is thus crucial, in order not to ruin the
simulation runtime.

6.1 Common algorithms

6.1.1 Brute-force O(N2) algorithm

The naive algorithm consists of course in computing all N(N − 1)/2 mutual distances and
to deduce, at a given timestep, which moonlets are in a close encounter and need special
treatment. This however yields a O(N2) time complexity, limiting the total number of
moonlets to a few thousands at best (N ∼ 2000 in Salmon and Canup, 2012).

6.1.2 Plane-sweep algorithm and octree

Rein and Liu, 2012 propose for REBOUND two time-efficient algorithms to take care of
close encounters. The first one consists in putting the moonlets in a recursive structure
called octree, which allows for a treatment in O(N lnN) (Barnes and Hut, 1986), but at
the cost of a complicated data structure (see Rein and Liu, 2012, Sect 5.2).

The other algorithm they propose, first described by Bentley and Ottmann, 1979,
consists in sweeping the space R3 with a plane (e.g. a plane x = cst), and to look for close
encounters only between particules whose trajectory over the last timestep crosses the
same x-plane. This yields a O(NK(N)) algorithm, where K(N) ≤ N . The algorithm
is efficient when the direction of the sweep is much larger than the other two directions
(K(N) ≪ N). For a very scattered moonlet disk though, the version of the algorithm
described by Rein and Liu, 2012 is inefficient. It can be improved to O(N lnK(N)) by
following the original description of Bentley and Ottmann, 1979, but at the cost of a
complicated-looking implementation. Even if an initially thin moonlet disk is simulated,
for which the plane-sweep algorithm can be efficient, orbit-shuffling should eventually
scatter the moonlets. The plane-sweep algorithm does not detect all collisions, but only
most of them.

6.2 Closest-pair problem and collision detection
The three aforementionned algorithms are basically the only algorithms used in celestial
mechanics for collision detection in N -body simulations (I think). There exist, however,
other algorithms that treat the closest-pair problem, which is not unrelated to the problem
of detecting all close encounters. I present here two algorithms that solve the closest-pair
problem and in Sect. 6.2.3, I present a simplified, modified version of the algorithm
presented in Sect. 6.2.2 that allows for collision detection in the Moon-forming disk in an
efficient time manner.
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6.2.1 Divide and conquer O(N lnN) algorithm

The most famous efficient algorithm that solves the closest-pair problem is the divide and
conquer algorithm.

The algorithm is as follow. The N moonlets are sorted according to, let’s say, their
x-coordinate, and recursively divided into two sets at the median value of their x, until
each set contains very few moonlets and can be taken care of efficiently with a brute-force
method. It turns out (see here or here) that once the closest pair of each half is found,
the overall closest-pair can be found in O(N). If T (N) denotes the time-complexity of
this algorithm, we thus have

T (N) = 2T (N/2) + O(N), (41)

which yields T (N) = O(N lnN).

6.2.2 Randomized sieve O(N) algorithm

Khuller and Matias, 1995 presented a randomized sieve algorithm that can solve the
closest-pair problem in linear time, at the cost of dealing with a hash structure (and of
using the floor function, but I don’t know why this is relevant). I think that this algorithm
has never been used in celestial mechanics in order to treat collisions and close encounters,
but this needs to be verified. We define S0 as the set of all the moonlets. Let m1 and
m2 be the two closest moonlets of S0 and δ the distance between them. The algorithm
presented by Khuller and Matias, 1995 is only valid in two dimensions, and I present here
a slightly different version that works in three dimensions. The algorithm is made of two
distinct steps, although somewhat similar.

• In the first step, called filtering by the authors, a O(N) procedure is used to find an
approximation δ̂ of δ such that δ̂/2

√
3 ≤ δ ≤ δ̂.

• Then, in the second step, this approximation is used to find δ and the pair (m1,m2)
in O(N) time.

For the two steps to be described, the notion of neighborhood has to be defined. Let γ be
a positive non-zero real number. Imagine you have a γ-mesh of R3, that is, R3 is divided
into cubes of side-length γ, with the origin being located at the junction between 8 cubes
(See Fig. 1 of Khuller and Matias, 1995, for the 2-dimensional case).

Definition The neighborhood of a moonlet m is defined as the cubic cell containing
m, plus the 26 adjacent cells. It is easy to verify that:

• If a moonlet is more than 2
√

3 γ apart from m, then it is not in its neighborhood.

• If a moonlet is less than γ apart from m, then it is in its neighborhood.

The filtering step consists in sieving S0 by a sequence (Si)i∈N of decreasing cardinal, such
that, for a particular integer ι̂

i > ι̂ ⇒ Si = ∅. (42)
The sieving process is as follow: In the set Si, pick a moonlet at random and compute
the minimal distance δi between that moonlet and any other moonlet. Build a δi-mesh

https://www.geeksforgeeks.org/closest-pair-of-points-using-divide-and-conquer-algorithm/
https://www.quora.com/How-can-I-find-algorithmically-the-closest-pair-of-points-in-n-dimensional-space-How-would-the-algorithm-differ-from-the-Shamos-Hoey-2D-algorithm
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and construct Si+1 by removing from Si all moonlets alone in their neighborhood. Keep
going until you reach the empty set. While δi can be computed in O(|Si|) time with a
brute-force method, constructing Si+1 in O(|Si|) time requires the use of a hash structure
that stores all non-empty cells of the mesh. We define δ̂ = δι̂ and it is easy to prove that
δ̂/2

√
3 ≤ δ ≤ δ̂.

The second step is as follow: Build a δ̂-mesh. Since δ ≤ δ̂ the two closest moonlets are
in each other neighborhood. Additionally, since δ̂ ≤ 2

√
3δ, the moonlets are expected to

have at most very few moonlets in their neighborhood (O(1) moonlets). For each moonlet,
find all moonlets in its neighborhood and compute their mutual distance to find the pair
of closest moonlets.

It is clear that the second step can be performed in O(N). Furthermore, Khuller and
Matias, 1995 showed that

E
(

ι̂∑
i=0

|Si|
)

≤ 2N, (43)

where E denotes the expectancy. As long as Si+1 can be deduced from Si in O(N) time,
the overall complexity of the algorithm is O(N).

6.2.3 Simplified O(N) mesh algorithm for collision detection

The algorithm described by Khuller and Matias, 1995 is not completely straightforward
to implement and only allows for the closest pair of moonlet to be identified. Here, I
describe an algorithm inspired by that of Khuller and Matias, 1995, easier to implement
and able to detect almost all collisions in O(N) time.

The algorithm is as follow: For a real number γ > 0, we build a γ-mesh. At each
timestep, we only look for collisions between moonlets that are in each other neighborhood.
If γ is chosen as a function of N and such that, on average, each moonlet has very few
moonlets in its neighborhood, then the algorithm runs in O(N) time.

If γ is too large, the moonlets have, on average, too many other moonlets in their
neighborhood, which leads to a bad time complexity. On the other hand, if γ is too small,
some moonlets could be larger than γ, or could travel a distance larger than γ during a
timestep. In both cases, some collisions are missed. Hence there exists an optimal choice
for γ that ensures both the efficiency of the algorithm and a low time complexity.

Let us assume that, initially, all the moonlets are located in a disk of constant aspect
ratio h/r, at a radius r ≤ Rmax. Then they occupy a volume

V = 4
3πR

3
max sin ς = 4

3πR
3
max

√√√√ h2/r2

1 + h2/r2 , (44)

where tan ς = h/r. In order for each moonlet to have, on average, at most x moonlets in
its neighborhood, the mesh size must verify (3γ)3 ≤ xV/N , that is

γ ≤
( 4πx

81N

)1/3 ( h2/r2

1 + h2/r2

)1/6

Rmax. (45)

With h/r = 0.05, Rmax = 10R⊕, N = 105 and x = 1, this gives γ = 0.04263R⊕, or
γ = 271.6 km. If the N moonlets have, let’s say, a total mass that of the Moon, then their
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average radius is R = R$/N
1/3. For N = 105 this gives R = 37.4 km. The condition that

the moonlets are smaller than γ is 2R ≤ γ. Choosing x = 1 and Rmax = 10R⊕, this gives

sin ς =

√√√√ h2/r2

1 + h2/r2 ≥ 162
πx

(
R$
Rmax

)3

≈ 0.0010457, (46)

that is h/r ≳ 10−3. Choosing for γ the critical value given by Eq. (45), and for h/r a
value much larger than that predicted by Eq. (46) should ensure that for most of the
moonlets, the simplified sieve algorithm will efficiently detect the collisions.

The largest moonlets of the simulation, however, are likely to be larger than γ. Let B
denote the set of all moonlets larger than γ. This idea is to treat differently a moonlet
according to whether or not it is in B. If a moonlet belongs to B, then at each timestep,
we compute all the mutual distances between moonlets of B and any other moonlets to
look for collision. If b denotes the cardinal of B, then the time complexity is O(bN), and
b needs to be much smaller than N for time efficiency. If a moonlet is not in B, we treat
it with the simplified sieve algorithm.

7 Resolving collision
In this section, we consider the collision between two moonlets of masses m1 and m2
and radii R1 and R2. The positions and velocities of the moonlets, at the instant of the
impact, are denoted by r1, r2, v1 and v2. We also denote

∆r = r1 − r2 and ∆v = v1 − v2. (47)

7.1 Elastic collision
Let us first assume that the collision is elastic, in the sense that it conserves both energy
and momentum. Let v′

1 and v′
2 be the moonlets velocities after the impact. If we write

v′
1 − v1 = − J

m1
and v′

2 − v2 = J

m2
, (48)

then it is immediate to verify that the total momentum is conserved, whatever the vector
J is. Let us write

J = αel (∆r · ∆v) ∆r, (49)
where αel is a real number. The scalar product ∆r · ∆v traduces the violence of the
impact, in the sense that, for a grazing collision, ∆r · ∆v = 0, while for a frontal collision,
it reaches an extremum ∆r · ∆v = −∆r∆v. The variation of kinetic energy ∆E at the
impact reads

∆E = αel (∆r · ∆v)2
(
m1 +m2

2m1m2
αel∆r2 − 1

)
. (50)

At the impact, we have ∆r = R1 +R2 and the elasticity of the collision reads

αel = 2m1m2

(m1 +m2) (R1 +R2)2 . (51)
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7.2 A model for inelastic collisions
Sect. 7.2 is now deprecated. The code does not use it. Refer to Sect. 7.3 instead.

Clearly, considering elastic collisions is not realistic enough as it prevents accretion
and moonlet growth. We need to develop a model for non-elastic collisions.

7.2.1 Accretion

The results of Sect. 7.1 suggest a very straightforward model for non-elastic collisions.
We simply write J = α (∆r · ∆v) ∆r, and if we choose for α a non-zero value different
from that given in Eq. (51) for αel, then the collision in inelastic. Let us write

α = fm1m2

(m1 +m2) (R1 +R2)2 , (52)

where f ∈ R. Then the variation in kinetic energy due to the impact reads

∆E = 2f (f − 2) m1m2

m1 +m2
cos2 θ∆v2, (53)

where sin θ = b/ (R1 +R2) and b is the impact parameter3. To prevent an energy increase,
we must consider 0 < f < 2. The condition that the two moonlets gets farther away after
the impact reads ∆v′ · ∆r ≥ 0. We have

∆v′ · ∆r = (1 − f) (∆v · ∆r) , (54)

and so we must take f ≥ 1, otherwise the moonlets keep getting closer after the collision
and enter each other. The relative velocity ∆v′ after the impact is given by

∆v′2 = ∆v2
(
1 + f (f − 2) cos2 θ

)
, (55)

and choosing f = 1 is also unrealistic as it yields a 0 relative velocity after a frontal
collision (θ = 0). Therefore, we have to choose 1 < f < 2 for a realistic inelastic collision.
The quantity f parameterizes the inelasticity of the collision, with values of f close to 2
corresponding to almost elastic collisions, whereas values close to 1 correspond to very
inelastic collisions.

The accretion process is managed differently according to whether or not the mutual
gravitational interactions between the moonlets are taken into account.

• If the mutual gravitational interactions are considered, then we just leave the
moonlets evolve after the collision. If they can’t escape each other gravity, then
they will just bounce back several times until they almost stop relative to each
other. After a collision, we say that two moonlets merge if their relative speed is
much smaller than their mutual escape velocity (say less than 0.05 vesc). The main
advantage of this procedure is that it fully and realistically simulates the tidal forces
that exists between the moonlets, due to the differential attraction of the Earth.

3This gives cos2 θ = 1 − b2/ (R1 + R2)2.
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• If the mutual gravitational interactions are not considered, then the moonlets merge
if their relative velocity after the impact is less than their mutual escape velocity.
Such a procedure doesn’t take into account tidal forces due to the Earth, and the
merging criterion should probably be modified like in Appendix D of Salmon and
Canup, 2012, for a better description.

7.2.2 Splitting

Previous works do not consider the possibility that, upon impact with another moonlet, a
moonlet might split into two or more parts. Since the moonlets have no internal cohesion
and are held only by their own gravity, such event seems likely to happen, especially for
near-frontal, high-velocity impacts.

A precise description of the phenomenon seems difficult to achieve, and to simplify, we
consider in this work that only the largest of the two colliding moonlets can split, into at
most two parts. Let m and R be the mass and radius of that moonlet. Before the split,
the potential energy of auto-gravitation is

U (0) = −3
5

Gm2

R
. (56)

If the moonlet splits into two equal-sized parts, the potential energy becomes

U (1) = −6
5

Gm′2

R′ − Gm′2

2R′ , (57)

where m′ = m/2 and R′ = R/21/3. The amount of energy needed for the split thus reads

U (1) − U (0) = 3 − 2−8/3 17
5

Gm2

R
≈ 0.0645335538 Gm2

R
. (58)

The energy ∆E lost during the impact is shared between heating and splitting. If we say
that a proportion f̂ of ∆E is splitting energy, and a proportion 1 − f̂ of ∆E is heating
energy, then the splitting criterion reads

f̂∆E ≥ U (1) − U (0), (59)

where ∆E is given by Eq. (53). I still don’t know how to deal with the splitting procedure,
in particular, what velocity to give to the two parts ? I can’t give them the same velocity,
otherwise they will just merge right after the split, and if I give them a velocity with
some angle with respect to the velocity predicted by Eq. (48), then then total angular
momentum won’t be conserved at the collision.

7.3 Fragmentation
The description made in Sect. 7.2.2 is too uncertain. I rely in this section on the literature
to achieve the best possible description of moonlet fragmentation. We consider the collision
between two moonlets, and in a similar fashion as the literature does, we refer to the
largest one as the target and to the smallest one as the impactor. The impactor (resp.



7.3 Fragmentation 16

target) has mass and radius denoted by m1 and R1 (resp. m2 and R2), and like in previous
sections, the relative velocity at the impact is denoted by ∆v, while the impact angle is

θ = arcsin
(

b

R1 +R2

)
= arccos

√√√√1 − b2

(R1 +R2)2 , (60)

with b the impact parameter. Both moonlets share the same density ρ, and we denote
M = m1 +m2.

7.3.1 Dimensional analysis

Since the moonlets are made up of liquid silicates, we make here the assumption that
they have no internal cohesion and are held only by gravity. The impactor and target
are entirely determined by their radius and density. Therefore, any unknown quantity X
depending on the outcome of the collision follows a relation of the form

X = f(R1, R2, ρ,∆v,G), (61)

where f is any function. In order to simplify the problem, the literature assumes that the
impactor is entirely determined by a unique scalar quantity, called the coupling parameter.
This coupling parameter generally takes the form (Holsapple and Housen, 1986)

C = R1∆vµρν , (62)

where µ and ν are exponents to be fitted. If, for example, µ = 2ν = 2/3, then the
impactor is entirely determined by its kinetic energy and such regime is called energy
scaling. The case µ = ν = 1/3 corresponds to momentum scaling and µ has been observed
to lie between 1/3 and 2/3.

Equation (61) now reads X = f(C,R2, ρ,G), and in the particular case where X = C,
we can write

C = f(R2,G, ρ). (63)
We loosely use the letter f to denote a functional dependency, and f refers to distinct
functions in the different equations of this section. Dimensional analysis and the π-theorem
allow Eq. (63) to be rewritten as

f(Π̃G) = 0, (64)
where

Π̃G = Gµρµ+2νR
2(µ+1)
2

C2 (65)

is a dimensionless quantity. Instead of the coupling parameter C, the literature prefers to
make use of the specific kinetic energy defined as (Suetsugu et al., 2018, Eq. (1))

QR = 1
2

m1m2

(m1 +m2)2 ∆v2. (66)

When the target is much more massive than the impactor, QR reduces to the impactor’s
kinetic energy per unit target mass. In that case, we can redefine the dimensionless
parameter as (Holsapple and Housen, 1986, Eq. (23))

ΠG = QR (ρG)−3µ/2 R−3µ
2 ∆v3µ−2 = Π̃−3/2

G . (67)
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Holsapple and Housen (1986) use the π-theorem to give general functional dependencies
of the distribution of fragment sizes, the mass of the largest fragment and to define a
fragmentation threshold.

• Distribution of fragment sizes Let Mm be the total mass of all fragments with
mass at most m. Then there exists a function f such that

Mm

M
= f

(
m

M
,ΠG

)
(68)

• Mass of the largest fragment Let m̃ be the mass of the largest fragment remaining
after the collision. By definition, Mm̃/M = 1, and so we have

m̃

M
= f(ΠG). (69)

• Threshold for catastrophic fragmentation In the literature (Holsapple and
Housen, 1986; Benz and Asphaug, 1999; Genda et al., 2017; Suetsugu et al., 2018),
a collision is said to be catastrophic or disruptive (resp. erosive or cratering) if
m̃ ≤ M/2 (resp. if m̃ ≥ M/2). We denote Q⋆

R and Π⋆
G the critical values of QR and

ΠG, that is, their value at the boundary between catastrophic and erosive collision.
We have

Q⋆
R = Π⋆

G (ρG)3µ/2 R3µ
2 ∆v2−3µ. (70)

7.3.2 Numerical estimates

We define the ejected mass m̌ as the total mass not pertaining to the largest fragment,
that is (Suetsugu et al., 2018, Eq. (2))

m̌ = M − m̃. (71)

In the regime QR ∼ Q⋆
R, Stewart and Leinhardt (2009), with SPH simulations, and

Suetsugu et al. (2018), with purely hydrodynamics simulations, showed that Eq. (69) can
be fitted by

m̌

M
= 1

2
QR

Q⋆
R
. (72)

In the erosive regime (QR ≪ Q⋆
R), a linear fit still holds and Suetsugu et al. (2018) find

m̌

M
= ψ

2
QR

Q⋆
R
, (73)

where, for frontal collisions (θ = 0), ψ = 0.4. Both ψ and Q⋆
R depend on θ, but the value

of ψ does not matter since Q⋆
R is proportional to ψ (Eq. (78)). If QR > 2Q⋆

R, then Eq.
(73) predicts that the largest fragment has a mass 0 and this equation is not valid for very
catastrophic collisions. When QR exceeds 1.8Q⋆

R (Or equivalently, when m̃ ≤ 0.1M), the
largest mass m̃ is no longer proportional to QR, but rather follows an exponential law
given by Eq. (44) of Leinhardt and Stewart (2012)

m̃

M
= 1.83/2

10

(
QR

Q⋆
R

)−3/2

, (74)
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where the choice of the proportionality coefficient ensures the continuity with Eq. (73).
The results of Sect. (7.3.4) about the fragments sizes distribution assume m̃ ∝ QR. For
simplifications, we consider in this study that in the super-catastrophic regime (when
QR ≥ 1.8Q⋆

R), only the largest fragment remains, and the rest of the mass is removed
from the simulation and added to the inner fluid disk.

7.3.3 Mass of the largest fragment

Let M(v) denote the total mass of fragment having a velocity (relative to the barycenter
of the impactor and target) larger than v. We can use the knowlegde of the distribution
of M(v) to constrain the value of Π⋆

G in Eq. (70). Indeed, given how the largest remaining
fragment is precisely defined (See end of Sect. 2 of Suetsugu et al., 2018), we have

m̌ = M(vesc), (75)

where vesc is the escape velocity of the sum target + impactor. The velocity distribution
is given by (Housen and Holsapple, 2011, Table 1, Suetsugu et al., 2018, Eq. (19))

M(v)
m1

= 3k
4πC

3µ
1

(
v

∆v cos θ

)−3µ

, (76)

where k and C1 are constants depending on the material properties. For liquid moonlets,
Table 3 of Housen and Holsapple (2011) gives

µ = 0.55, k = 0.2, C1 = 1.5. (77)

For rocky moonlets, µ and C1 are unchanged but k increases to 0.3. Combining Eqs. (73)
and (76), we obtain

Q⋆
R

v2
esc

= ψπ

3k
m2

M
(C1 cos θ)−3µ

(
∆v
vesc

)2−3µ

, (78)

and so, with Eq. (70)

Π⋆
G = m2

M

ψπ

3k

(8π
3

)3µ/2
(C1 cos θ)−3µ . (79)

Combining Eqs. (66), (73) and (78), we have the final expression for the ejected mass

m̌

m1
= 3k

4πC
3µ
1

(
∆v cos θ
vesc

)3µ

(80)

and the mass m̃ of the largest fragment follows directly from m̃ = M − m̌.

7.3.4 Mass of the nth largest fragment

Equation (80) gives the mass of the largest fragment, and in this section, we give an
estimate of the mass of the nth largest fragment for n ≥ 2. Leinhardt and Stewart (2012)
give for the size distribution of the moonlet fragments

n(r) = Cr−(β+1), (81)
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where n(r)dr is the total number of fragments with radii between r and r + dr, and C
and β are constant. Let m̃n be the mass of the nth largest fragment, and rn its radius.
We assume that all fragments are spherical with density ρ and we write m̃1 = m̃.

Leinhardt and Stewart, 2012 (Sect. 3.2) use Eq. (81) to estimate m̃2. Here we use use
Eq. (81) to give an estimate of m̃n for all n ≥ 2. The total number of fragments larger
than the nth largest fragment is

n =
∫ +∞

rn

n(r)dr = C

β
r−β

n , which gives rn =
(
nβ

C

)−1/β

. (82)

The total mass of fragments smaller than the nth largest fragment is given by

M −
n−1∑
k=1

m̃k =
∫ rn

0

4
3πρr

3n(r)dr = 4πρCr3−β
n

3 (3 − β) . (83)

Equations (82) and (83) show that a realistic description verifies 0 < β < 3. Combining
these two equations, we obtain, for n ≥ 2, the mass of the nth largest fragment as

m̃n

M
= 1
nβ

(3 − β)
(

1 −
n−1∑
k=1

m̃k

M

)
. (84)

In their simulations, Leinhardt and Stewart (2012) use the mass of the second largest
fragment to constrain β. Their best fit corresponds to

β = 2.85, (85)

and we adopt this value in this work. In Table 1, we show the sequence (m̃n) for different
choices of m̃. This approach predicts an infinite number of fragments, and Table 1 shows

m̃ 103m̃2 103m̃3 103m̃4 103m̃5 103m̃6 103m̃1000 m̃1 + · · · + m̃1000

0.1 23.68 15.37 11.33 8.943 7.374 0.034 0.361
0.2 21.05 13.67 10.07 7.950 6.555 0.030 0.432
0.5 13.16 8.541 6.293 4.969 4.097 0.019 0.645
0.8 5.263 3.416 2.517 1.987 1.639 0.007 0.858
0.98 0.526 0.342 0.252 0.199 0.164 0.001 0.986

Table 1 — Sequence of the m̃n for different choices of the largest mass m̃. The m̃n have been
normalized by M and β = 2.85.

that the total normalized mass (m̃1 + · · · + m̃n) /M tends slowly to 1 as n goes to infinity.
Some truncation rule on the fragment sizes has to be defined to prevent a too large number
of fragments. We detail it in Sect. 7.3.5

Asymptotic expansion This part is not used by the code. Refer to Sect. 7.3.5

Equation (84) gives the mass of the nth largest fragment, but it is a recurrence relation
over all n− 1 larger fragments. By induction, we can however show that the mass of the
nth largest fragment is given, for n ≥ 2, by

m̃n = K

n
m̌

(
1 − K

2

)(
1 − K

3

)
· · ·

(
1 − K

n− 1

)
, (86)



7.3 Fragmentation 20

where m̌ is given by Eq. (80) and K = (3 − β) /β. While this expression does not depend
on m̃k for k < n, it is still not very tractable. We now find an asymptotic expansion of
Eq. (86) that gives m̃n in a straightforward manner. Let (Vn)n≥2 be the sequence

Vn =
(

1 − K

2

)(
1 − K

3

)
· · ·

(
1 − K

n

)
=

n∏
j=2

(
1 − K

j

)
. (87)

Denoting Un = ln Vn, a comparison with the integral
∫ n

2 ln(1−K/x)dx yields Un ∼ −K lnn.
Hence there exists constants γ, a′, b′ and c′ such that the sequence (Un)n≥2 has the
asymptotic expansion

Un = −K lnn+ γ + a′

n
+ b′

n2 + c′

n3 + O
( 1
n4

)
. (88)

Defining U ′
n = Un + K lnn− γ, the coefficients a, b and c are found by writing

U ′
n −U ′

n+1 = a′
( 1
n

− 1
n+ 1

)
+b′

(
1
n2 − 1

(n+ 1)2

)
+c′

(
1
n3 − 1

(n+ 1)3

)
+O

( 1
n5

)
. (89)

Expanding both sides to fourth order in 1/n, we obtain

a′ = (3 − β) (3 − 2β)
2β2 , b′ = (3 − β) (2 − β) (3 − 2β)

4β3 , c′ = a′2

3 . (90)

The constant γ can be found numerically. We have

γ = 0.0213485661094397 ⇒ eγ = 1.021578077080539. (91)

Using m̃n = K m̌ Vn−1/n, we have for the mass of the nth largest fragment

m̃n = 3 − β

β
eγ m̌ n−3/β

(
1 + a

n
+ b

n2 + c

n3 + O
( 1
n4

))
, (92)

where

a = 3 (3 − β)
2β2 ≈ 0.02770083102493073,

b = (3 − β) (3 + β) (9 − 2β)
8β4 ≈ 0.005486452682223121,

c = 3 (3 − β)2 (3 + β) (3 + 2β)
16β6 ≈ 0.0004006726965108799.

(93)

In order to check the quality of the expansion, we denote m̃n the exact mass of the nth

largest fragment, obtained from Eq. (84) or (86), and m̃′
n the asymptotic value given

by Eq. (92). We give in Table 2 the relative error |m̃n − m̃′
n| /m̃n between the exact

expression and the asymptotic expression. The agreement is excellent for all n ≥ 2.
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n 2 3 4 10 100
|m̃n − m̃′

n|
m̃n

2.38 10−5 4.90 10−6 1.57 10−6 4.06 10−8 4.04 10−12

Table 2 — relative error |m̃n − m̃′
n| /m̃n for different values of n.

7.3.5 A simple yet realistic collisional model

The fragmentation model described above predicts an infinite total number of fragments.
In order to efficiently simulate the Moon forming disk, we need to define a truncation rule
that prevents the total number of moonlets in the simulation from growing too fast. Since
the partial mass m̃1 + m̃2 + · · · + m̃n slowly converges to M as n goes to infinity (see
Table 1), we cannot simply consider the first few largest fragments and discard the rest,
as it would yield a huge mass loss.

We define the fragment tail as all the fragments but the largest. The mass of the
fragment tail is thus the total ejected mass m̌. According to Eq. (84) or (86), the mass of
the second largest fragment is

m̃2 = 3 − β

2β m̌. (94)

If we were to consider that the tail is composed of Ñ fragments all of mass m̃2, then the
tail would be made up of

Ñ = 2β
3 − β

= 38 moonlets if β = 2.85. (95)

This is already a lot, and in order not to overcomplicate, we simply assume that the tail
is composed of Ñ moonlets of mass m̃2 each. The final collisional model is as follow

• I define a mass threshold m(0) (say 10−7M$), such that if m̃2 < m(0) ≤ Ñm̃2, then
the tail is made up of one unique fragment of mass Ñm̃2 = m̌ and velocity v̌ given
by Eq. (105). If m̌ < m(0), then the collision results in a perfect merger.

• If m̃2 ≥ m(0), then the collision is resolved with the fragmentation model. The two
moonlets are thus broken into Ñ + 1 pieces, where the largest fragment has a mass
m̃ = m1 + m2 − m̌ with m̌ given by Eq. (80), and the Ñ other fragments have a
mass m̃2 given by Eq. (94).

• For super-catastrophic events (QR ≥ 1.8Q⋆
R), the mass of the largest fragment is

given by Eq. (74). The other fragments are discarded and their mass added to the
inner fluid disk.

• The largest fragment has velocity ṽ and position r̃ worked out in Sect. 7.3.8, while
the Ñ other fragments have scalar velocities ṽ1, ṽ2, · · · , ṽÑ given by Eq. (103),
and directions defined in Sect. 7.3.7.

• The user chooses a threshold Nmax for the total number of moonlets N that the
simulation can handle. If N reaches Nmax, then either the code raises an error, or
the 5 % smallest moonlets are removed from the simulation and their mass added to
the inner fluid disk.
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• The value β = 2.85 should correspond to the most physically realistic choice, as
it corresponds to the best fit of Leinhardt and Stewart (2012). However, it yields
Ñ = 38 which is quite large. If N reaches Nmax too often, then a smaller value for
β will need to be chosen. β = 30/11 ⇔ Ñ = 20 could be more manageable.

• The conservation of the total angular momentum is achieved in Sect. 7.3.8

7.3.6 Velocities of fragments

We now estimate the velocities of the fragments after the impact. We assume the
distribution of Housen and Holsapple (2011), given in Eq. (76), where M(v) denotes the
total mass of fragments with a speed larger than v.

Velocity of the largest fragment Deprecated. Refer to Sect. 7.3.8

According to Leinhardt and Stewart, 2012 (Sect. 3.3), the largest fragment has a velocity
close to its initial velocity if the impact angle was large; and moves with the center of
mass after a head-on collision. Therefore we write for the velocity of the largest fragment

ṽ = cos θ vcm + (1 − cos θ) v2, (96)
where vcm = (m1v1 +m2v2) /M is the velocity of the center of mass.

Velocity of the other fragments

Let m(v)dv denote the total mass of particles having a velocity with respect to the largest
fragment between v and v + dv. We have

m(v) = −dM(v)
dv

= 9µk
4π (∆vC1 cos θ)3µ v−(3µ+1). (97)

Combining with Eq. (80), this can be rewritten as

m(v)v = 3µm̌
(
vesc

v

)3µ

. (98)

Since all Ñ fragments of the tail are unbounded to the center of mass, the slowest of
these is made up of particles having velocities between vesc and some velocity u1. More
generally, the kth fastest fragment of the tail has a velocity ṽk with respect to the center
of mass given by

m̃2ṽk =
∫ uk

uk−1
m(v)vdv, (99)

where u0 = vesc, uÑ = +∞ and for all k ≤ Ñ , uk−1 < ṽk < uk. The speeds uk are
unknown, but they can be found by writing

m̃2 =
∫ uk

uk−1
m(v)dv = m̌

( vesc

uk−1

)3µ

−
(
vesc

uk

)3µ
 . (100)

If we define
zk =

(
vesc

uk

)3µ

, (101)
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then Eq. (100) yields zk−1 − zk = m̃2/m̌, that is

zk = 1 − k

Ñ
, for 0 ≤ k ≤ Ñ . (102)

Injecting Eq. (102) into Eq. (99), we obtain for the velocity of the kth fastest fragment of
the tail

ṽk

vesc
= Ñ

ϛ

[(
1 − k − 1

Ñ

)
ϛ

−
(

1 − k

Ñ

)
ϛ
]
, (103)

where ϛ = (3µ− 1) /3µ = 13/33. According to Eq. (103), the fastest fragment of the tail
has a speed

ṽÑ = Ñ1−ϛ

ϛ
vesc ≈ 23.105 vesc if β = 2.85. (104)

Surprisingly enough, this is independent of ∆v. When the threshold m̃2 ≥ m(0) is not
met, then the tail is made up of one unique fragment whose scalar velocity is

v̌ = 1
m̌

∫ +∞

vesc
m(v)vdv = vesc

ϛ
= 33

13vesc. (105)

7.3.7 Direction of fragments

After the impact, the fragments of the tail are given positions and speeds with respect to
the largest fragment according to the following schema.

∆r

∆v
m2 m1

θ
∆r

u v

v = ∆r×∆v
∆r∆v sin θ

R2

R1

u = v×∆r
R1+R2

R̃2

m̃2

R̃2

m̃2

m̌ = Ñm̃2

m̃

We give to the kth fragment of the tail the position

r̃′
k = ∆r + 2pkR̃2u + 2qkR̃2v, (106)

and the speed
ṽ′

k = ṽk
r̃′

k

r̃′
k

= ṽk
r̃′

k√
(R1 +R2)2 + 4R̃2

2 (p2
k + q2

k)
, (107)

where (pk, qk) ∈ Z2 and ṽk is given by Eq. (103). If the collision is nearly frontal, then the
vector v is ill-defined in this schema. In that case we take for v any unit vector orthogonal
to ∆r. With Ñ = 15 (or β = 45/17), −1 ≤ pk ≤ 3 and4 −1 ≤ qk ≤ 1, the fragmented
moonlets would look like

4This choice ensures that more fragments are ejected forward than backward, which sounds intuitive.
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∆r

ṽk

ṽk

ṽk

ṽk

ṽk

m̃

While all fragments of the tail are unbounded to the largest fragment, there is no
reason why the fragments of the tail should be unbounded to one another. Depending on
their relative velocities, some pairs will be unbounded while some others will not. With
Ñ = 15 the scalar velocities range from ṽ1 ≈ 1.02 vesc to ṽ15 ≈ 13.1 vesc, and considering
that vesc is the escape velocity at the surface of a complete merger, it is clear that most
pairs, if not all, will be unbounded when m̌ ≪ m̃. If the tail is made up of one unique
fragment, then we take p1 = q1 = 0.

7.3.8 Conservation of the total angular momentum

With the current fragmentation model, the total angular momentum is, a priori, not
conserved upon impact. In this section, we choose the velocity ṽ and the position r̃ of
the largest fragment in such a way that the total angular momentum is preserved upon
impact. Then, the velocity and position of the kth fragment of the tail are given in the
geocentric reference frame (O, i, j,k) by

r̃k = r̃′
k + r̃, ṽk = ṽ′

k + ṽ. (108)

Case of a merger

If the collision results in a merger, then the outcome is a single moonlet of mass M =
m1 +m2. The conservation of the total angular momentum reads

m1r1 × v1 +m2r2 × v2 := G = M r̃ × ṽ. (109)

It is interesting to notice that it is impossible to preserve both the total momentum and
the total angular momentum. Indeed, the conservation of the total angular momentum
implies that ṽ is orthogonal to G. However, the conservation of the total momentum
reads M ṽ = m1v1 +m2v2 := Mvcm, and since we have

Mvcm · G = m1m2v2 · ∆r × ∆v, (110)

it is possible to conserve both the momentum and the angular momentum only if ∆r×∆v =
0, or equivalently, if the collision is frontal (θ = 0). For oblique collisions, the only way
to conserve both is to take into account the spin of the moonlets. However, taking
into account the spin complexifies the treatment of collisions as well as the numerical
implementation and slows down the code. Here, we choose to give up the conservation of
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the total momentum, as it merely traduces into a small kick to the global center of mass.
Instead, we preserve the total angular momentum.

In order to preserve the total angular momentum, we write

r̃ = m1

M
r1 + m2

M
r2 + δr̃ := rcm + δr̃, (111)

and we choose the smallest possible value of δr̃ that verifies

G · r̃ = G · δr̃ + m1m2

M
r2 · ∆r × ∆v = 0. (112)

Equation (112) is of the form a · w = b with unknown w = δr̃. We are lead to minimize
|w|2 under the constraint a · w = b. We write

L(λ,w) = |w|2 + λ (a · w − b) , (113)

where λ is a Lagrange multiplier. The gradient of L vanishes when w = ba/a2, and
therefore we take

δr̃ = m1m2

M
r2 · (∆v × ∆r) G

G2 . (114)

Once r̃ is known, Eq. (109) has the form a×w = b with unknown w = ṽ. Since a ·b = 0,
this equation has solutions given by5 w = (b × a) /a2 + αa for any α ∈ R. Therefore, we
take

ṽ = 1
Mr̃2 G × r̃ + αr̃, (115)

where we choose the real number α in order to minimize |ṽ − vcm|, where vcm is the
velocity of the center of mass. We have

|ṽ − vcm|2 = α2r̃2 − 2αr̃ · vcm +K, (116)

where K does not depend on α, and the minimal value of |ṽ − vcm| is thus reached at
α = (r̃ · vcm) /r̃2. Finally, we achieve the conservation of the total angular momentum by
giving to the unique moonlet resulting from the merger the position and velocity

r̃ = rcm + m1m2

M
r2 · (∆v × ∆r) G

G2 ,

ṽ = 1
Mr̃2 G × r̃ + r̃ · vcm

r̃2 r̃,
(117)

where rcm is the position of the center of mass.

Case of a fragmentation

If the collision results in a full fragmentation (m̃2 ≥ m(0)), then the conservation of the
total angular momentum reads

G = m̃r̃ × ṽ + m̃2

Ñ∑
k=1

(r̃ + r̃′
k) × (ṽ + ṽ′

k) . (118)

5This comes from a × (b × a) = a2b − (a · b) a.



7.3 Fragmentation 26

In the case of a partial fragmentation (m̃2 < m(0) ≤ m̌), the tail is reunited into a single
moonlet and the sum in Eq. (118) has only one term. I define6

g̃ = m̃2

Ñ∑
k=1

r̃′
k × ṽ′

k, s̃ = m̃2

Ñ∑
k=1

r̃′
k, ũ = m̃2

Ñ∑
k=1

ṽ′
k, (119)

and Eq. (118) can be rewritten

G = M r̃ × ṽ + r̃ × ũ + s̃ × ṽ + g̃, (120)

with unknowns r̃ and ṽ. If r̃ is known, then ṽ is given by the equation

a × ṽ = b, where a = M r̃ + s̃ and b = G − r̃ × ũ − g̃. (121)

Equation (121) only has solutions if a · b = 0, and we first constrain r̃ with the equation
a · b = 0. Then, we obtain ṽ from Eq. (121). There are infinitely many choices for both
r̃ and ṽ, and in each case we choose them in order to be as close as possible from the
conservation of the total momentum. The conservation of the total momentum reads

m̃r̃ + m̃2

Ñ∑
k=1

(r̃ + r̃′
k) = M r̃ + s̃ = Mrcm,

m̃ṽ + m̃2

Ñ∑
k=1

(ṽ + ṽ′
k) = M ṽ + ũ = Mvcm.

(122)

In order to determine r̃, we thus write M r̃ + s̃ = M (rcm + δr̃) and we choose the smallest
δr̃ that verifies a · b = 0. We have

a · b = (M r̃ + s̃) · (G − g̃) + r̃ · (s̃ × ũ) = (rcm + δr̃) · (MG −M g̃ + s̃ × ũ) = 0. (123)

We are left to minimize |δr̃| under a constraint of the form a · δr̃ = b. This was already
done in the merger case with the theory of Lagrange multiplier and we have

δr̃ = ba

a2 = −(rcm · a)a
a2 where a = M (G − g̃) + s̃ × ũ. (124)

Now that r̃ is known, we can obtain ṽ from Eq. (121). The solutions of Eq. (121) are
given by5

ṽ = b × a

a2 + αa, (125)

where α ∈ R. We choose for the real number α the value that is closest from preserving
the total momentum, that is, we choose the value of α that minimizes |M (ṽ − vcm) + ũ|
(see Eq. (122)). We have

1
M2 |M (ṽ − vcm) + ũ|2 = a2α2 − 2α

(
vcm − ũ

M

)
· a +K, (126)

where K does not depend on α and therefore, we choose

α = (vcm − ũ/M) · a

a2 . (127)

We uniquely determined r̃ and ṽ in such a way that the total angular momentum is
conserved upon impact up to machine precision, whether the collision results in a merger
or in a fragmentation.

6For a partial fragmentation, the sums are reduced to one term and m̃2 has to be replaced by m̌.
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